Semaine 20 - du 18/03/24 au 22/03/24

Programme de colle de Physique-Chimie

Connaissance du cours

Pour commencer la colle, une question de cours ou un exercice d'application direct tirés des listes suivantes ou des SF des TD peuvent être posés.

Chapitre EM3 - Equations de Maxwell

- * Donner l'expression du rotationnel et de la divergence en coordonnées cartésiennes.
- * Que peut-on dire du rotationnel d'un gradient?
- * Que peut-on dire de la divergence d'un rotationnel?
- * Énoncer le théorème de Stokes.
- * Énoncer le théorème de Green-Ostrogradski.
- * Énoncer les équations de Maxwell (avec leurs noms respectifs).
- * Démontrer la forme globale de chacune des équations de Maxwell.
- * Définir l'ARQS magnétique. Que peut-on appliquer dans cette approximation?
- * Énoncer l'équation de conservation de la charge. La démontrer en 1D cartésienne par un bilan et en 3D via l'équation de Maxwell Ampère.
- * Que deviennent les équations de Maxwell en régime stationnaire?
- * Définir le laplacien scalaire d'un champ scalaire.
- * Énoncer et démontrer l'équation de Poisson. Que devient-elle dans le vide?

Chapitre EM4 - Energie électromagnétique

- * Définir la densité volumique d'énergie électromagnétique.
- * En partant de l'énergie emmagasinée dans un condensateur, retrouver l'expression de sa capacité.
- * En partant de l'énergie emmagasinée dans une bobine, retrouver l'expression de son inductance.
- * Définir la densité volumique de puissance cédée aux porteurs de charge. A quoi est due cette puissance?
- * Définir un milieu ohmique et donner la loi d'Ohm locale. Que devient la puissance volumique cédée aux porteurs de charge?
- * Etablir l'expression de la résistance d'un conducteur ohmique en 1D et en régime stationnaire. En déduire la loi d'Ohm globale.
- * Définir le vecteur de Poynting et la puissance rayonnée par le champ électromagnétique.
- * Enoncer le bilan d'énergie électromagnétique sous sa forme globale et sous sa forme locale.

Semaine 20 Lycée Dorian

Chapitre EM5 - Propagation des ondes électromagnétique

 \star Quelle équation aux dérivées partielles est satisfaite par \overrightarrow{E} et \overrightarrow{B} dans le vide? L'établir à partir des équations de Maxwell.

- \star Donner la définition d'une onde scalaire plane, plane progressive, plane progressive harmonique.
- ★ Quelle est la solution générale de l'équation de d'Alembert scalaire en 1D?
- * Citer les ordres de grandeur des différents domaines des ondes électromagnétique.
- ★ Quelle est la relation de dispersion dans le vide?
- ⋆ Définir le vecteur d'onde.
- * Quelle relation existe-t-il entre \overrightarrow{k} , $\overrightarrow{\underline{E}}$ et $\overrightarrow{\underline{B}}$ pour une OPPH? Quelle est la relation de structure pour une OPP?
- * Quelle propriété énergétique possèdent les OPPH électromagnétique dans le vide?
- * Exprimer le vecteur de Poynting pour une OPPH électromagnétique.
- $\star\,$ Définir la polarisation d'une onde, et la polarisation rectiligne. Donner un exemple d'onde non polarisée.

Exercices —

Chapitres EM1, EM2 et EM3